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EXISTENCE OF COMPETITIVE EQUILIBRIA IN MARKETS 
WITH A CONTINUUM OF TRADERS' 

BY ROBERT J. AuMANN 

An appropriate model for a market with many individually insignificant traders is 
one with a continuum of traders. Here it is proved that competitive equilibria exist in 
such markets, even though individual preferences may not be convex. Such a result 
is not true for markets with finitely many traders. 

1. INTRODUCTION 

THE PROBLEM of rigorously establishing the existence of a competitive equilibrium 
in a market was first brought to the attention of economists by Wald [11]. Since 
the appearance of his pioneering paper, other authors2 have established the exist- 
ence of competitive equilibria under various sets of assumptions. In all this work, 
it was invariably assumed that the traders have convex preferences.3 Indeed, if 
this assumption is abandoned it is easy to give examples of markets that do not 
possess any competitive equilibria. 

Attention has recently been called4 to the possibility of dispensing with the 
convexity assumption if the market in question has a large number of traders, 
no individual one of whom can significantly affect the outcome of trading. In a 
heuristic, imprecise way it was argued that the preferences of a large number of 
individually insignificant traders would have a convex effect in the aggregate, even 
if none of the individual preferences were convex. A rigorous treatment of this 
theme was given very recently by Shapley and Shubik [10], though not directly in 
connection with the competitive equilibrium. Their work will be discussed in 
Section 8. 

In a previous paper [2], we suggested that the most appropriate model for a 
market with many individually insignificant traders is one with a continuum of 
traders. Analogous models are used in physics, for example, when the large num- 
ber of particles in a fluid are replaced for mathematical convenience by a con- 

1 Research partially supported by the Office of Naval Research, Logistics and Mathematical 
Statistics Branch, under contract No. N62558-3586. Previous research connected with this paper 
was supported by the Carnegie Corporation of New York through the Econometric Research 
Program of Princeton University and by U.S. Air Force Project RAND. 

2 Such as Arrow-Debreu [1] ,Gale [7], and McKenzie [9]. 
3 I.e., that the set of commodity bundles preferred or indifferent to a given bundle is convex. 
4 See the articles by Bator, Farell, Koopmans, and Rothenberg in the Journal of Political 

Economy: (Vol. 67, 1959, pp. 377-391; Vol. 68, 1960, pp. 435-468; Vol. 69, 1961, pp. 478-493). 
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tinuum of particles. This raises the question of whether it would be possible to 
establish the existence of competitive equilibria in markets with a continuum of 
traders, even when the preferences need not be convex. The purpose of this paper 
is to give an affirmative answer to that question, and thus to underscore the power 
and scope of the continuum-of-traders approach to market theory. 

We remark that the concept of competitive equilibrium is generally agreed to be 
significant only in a market with "perfect competition," i.e., one with a large num- 
ber of individually insignificant traders. The concept makes no sense for a small 
number of traders. Thus, we show here that when competitive equilibria are at 
all relevant, convex preferences are not needed to establish their existence. 

The proof is based on McKenzie's beautiful existence proof [9] for competitive 
equilibria in finite markets. Major modifications are required, however, because 
of the presence of a continuum of traders (which necessitates the use of Banach- 
space methods) and the nonavailability of convex preferences. 

In Section 2 we give a precise statement of the model and the main theorem. 
Section 3 is devoted to the statement of an auxiliary theorem. In Section 4 the proof 
of the auxiliary theorem is outlined, and in Section 5 it is completed. In Section 6 
the main theorem is deduced from the auxiliary theorem. 

Section 7 is devoted to a detailed comparison of our proof with McKenzie's, 
and Section 8 to a discussion of the relation of our current result to that of our 
previous paper [2] and to the Shapley-Shubik results [10]. 

Our result concerns true markets only, i.e., pure exchange economies. Presum- 
ably it can be extended to economies with production (at least if one assumes con- 
stant returns to scale), but we have not done this. 

2. MATHEMATICAL MODEL AND STATEMENT OF MAIN THEOREM 

We shall be working in a Euclidean space En; the dimensionality n of the space 
represents the number of different commodities being traded in the market. 
Superscripts will be used exclusively to denote coordinates. Following standard 
practice, for x and y in En we take x >y to mean xi >y' for all i; x _y to mean 
xi >y for all i; and x y to mean x >y but not x=y. The integral of a vector func- 
tion is to be taken as the vector of integrals of the components. Superscripts will 
be used exclusively to denote coordinates. The scalar product Sn 1 xiy' oftwo mem- 
bers x and y of En is denoted x y. The symbol 0 denotes the origin in En as well as 
the real number zero; no confusion will result. The symbol \ will be used for set- 
theoretic subtraction, whereas - will be reserved for ordinary algebraic subtrac- 
tion. 

A commodity bundle x is a point in the nonnegative orthant Q of En. The set of 
traders is the closed unit interval [0, 1]; it will be denoted T. The words "measure," 
"measurable," "integral," and "integrable" are to be understood in the sense of 
Lebesgue. All integrals are with respect to the variable t (which stands for trader), 
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and in most cases the range of integration is all of T. In an integral we will therefore 
omit the symbol dt and the indication of dependence of the integrand on t, and will 
specifically indicate the range of integration only when it differs from all of T. Thus 

fx means ST x(t) dt. A null set is a set of measure 0. Null sets of traders are system- 
atically ignored throughout the paper. Thus a statement asserted for "all" traders, 
or "each" trader, or "each" trader in a certain set, is to be understood to hold for 
all such traders except possibly for a null set of traders. 

An assignment (of commodity bundles to traders) is an integrable function on T 
to 2. There is a fixed initial assignment i; intuitively, i(t) is the bundle with which 
trader t comes to market. We assume 

(2.1) Ji >O. 

Intuitively, this asserts that no commodity is totally absent from the market. 
For each trader t there is defined on Q a relation et caled preference-or-in- 

difference. This relation is assumed to be a quasi-order, i.e., transitive, reflexive, 
and complete.5 From ?t we define relations >-, and , caled preference and 
indifference, respectively, as follows: 

X>-ty if x >tY but not y ktx, 

x ty if x tY and y ?tX. 

The following assumptions are made: 

(2.2) Desirability (of the commodities): x ?y implies x>-,y. 

(2.3) Continuity (in the commodities): For each yeQ, the sets {x: x >-ty} and 
{x: y >.-,x} are open (relative to Q). 

(2.4) Measurability: If x and y are assignments, then the set {t: x(t) >-ty(t)} is 
measurable. 

The intuitive content of these assumptions should be fairly clear from their names. 
Note that together with the assumption that >-t is a quasi-order, the conti- 
nuity assumption (2.3) yields the existence of a continuous utility function vt(x) 
on Q for each fixed trader t [4]. Then the measurability assumption6 (2.4) says that 
the vt can be chosen so that vt(x) is simultaneously measurable in t and x. 

An allocation is an assignment x such that Jx = f i. A price vector is a member p 
of Rn such that p > 0; though it is in Q, it should not be thought of as a commodity 
bundle. A competitive equilibrium is a pair consisting of a price vector p and an 
allocation x, such that for all traders t, x(t) is maximal with respect to >-t in the 
"budget set" Bp(t)= {xeQ: p x<p * i(t)}. 

5 A relation R? is called transitive if x.sy and y9tz imply x.sz; reflexive if x??x for all x; and 
complete if for all x and y, either x. Ay or ys Ax. 

6 In this context (but not in [2]), the measurability assumption is equivalent to the assumption 
that {t: x >-t y} is measurable for all x and y in Q. 
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MAIN THEOREM: Under the conditions of this section, there is a competitive equilib- 
rium. 

3. STATEMENT OF AUXILIARY THEOREM 

To prove the main theorem, we first establish an auxiliary theorem, which has 
some interest in its own right. Let us define a market X# to consist of a positive 
integer n (the number of commodities), an initial assignment i, and preference-or- 
indifference relations _t on Q for each of the traders t. The markets that we con- 
sider heie differ from those described in the previous section in a number of ways. 
First, condition (2.1) on the initial assignments is strengthened to read 

(3.1) i(t) >0 for all t . 

This means that a positive amount of each commodity is initially held by each 
trader. 

Second, a bundle x is said to saturate, or more explicitly, to saturate trader t's 
desire, if x et y for all yeQ2. Assumption 2.2 is weakened to read as follows: 

(3.2) Weak Desirability: Unless y saturates, x >y implies x>-ty. 

Notice that this is a double weakening of (2.2); the hypothesis x >y is replaced by 
x >y, and allowance is made for saturation (saturation is impossible under (2.2)). 

Third, under the auxiliary theorem we do not only permit saturation, we specifically 
require it. Let v be an assignment. We say that trader t's desire is commodity-wise- 
saturated at v(t) if for all bundles x and commodities i such that xi > vi(t), we have 

X t ( . ., Xi1 vif 
Xi +1 

Xn,. 

In other words, changing the value of the ith coordinate above vi(t) does not change 
the indifference level. Intuitively, this means that desire for the ith commodity is 
saturated when the quantity of that commodity is vi(t), although trader t may still 

Origin-v' 
FIGURE 1 
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want moi e of other commodities j, of which he holds less than vi(t). To rephrase 
the condition, let V(t) = {xe?2: x < v(t)} be the "hyper-rectangle" of bundles that 
are < v(t), and define a mapping vt from Q into V(t) as follows: v,(x) is the bundle 
formed from x by replacing by v'(t) all coordinates xi of x that exceed v'(t). Then 
commodity-wise saturation at v(t) asserts that v,(x) -,x. It follows that the entire 
preference order is determined by its behavior in the hypercube V(t,) since x et Y 
if and only if v,(x) >_- vt(y). A preference order with commodity-wise saturation 
is illustrated in Figure 1. 

The existence of a v(t) that commodity-wise saturates desire is intuitively very 
acceptable; it simply means that there is an upper bound on the amount of a 
commodity that can be profitably used by an individual, no matter what other 
commodities are or are not available. The demand that v be an assignment, i.e., 
integrable, means that "the market as a whole can be commodity-wise saturated"; 
more precisely, it means that there is a bundle (namely fv) that can be distributed 
among the traders in such a way as to commodity-wise saturate each trader's de- 
sire. We now assume 

(3.3) There is an assignment v such that each trader t's desire is commodity- 
wise saturated at v(t). 

Finally, we need the following assumption: 

(3.4) Saturation restriction: x cannot saturate unless x > i(t). 

AUXILIARY THEOREM: Let XA be a market satisfying the assumptions of this 
section as well as (2.3) and (2.4). Then X has a competitive equilibrium. 

4. OUTLINE OF THE PROOF OF THE AUXILIARY THEOREM 

The starting point of the proof is the preferred set Cp(t), defined for each trader t 
and each price vector p to be the set of commodity bundles preferred or indifferent 
to all elements of the budget set Bp(t); formally, 

Cp(t) = {xe?2: for all yeBp(t), x et y} 

(see Figure 2). Next, define 

fCP = {Sx: x is an assignment such that x(t) eCp(t) for all t} 

this is called the aggregate preferred set. fCP is the set of all aggregate bundles that 
can be distributed among the traders in such a way that each trader is at least as 
satisfied as he is when he sells his initial bundle and buys the best (by his standards) 
that he can with the proceeds, at prices p. 

Since we have made no convexity assumption on the preferences, the individual 
preferred sets Cp(t) need not be convex. The aggregate preferred set JCp, on the other 
hand, is convex; as we shall see, that fact holds only because there is a continuum 
of traders, and it constitutes the nub of the proof. By using the convexity of the 
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Origin 
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aggregate preferred set Cp, we shall be able to show that there is a unique point 
c(p) in SCP that is nearest to Ji; set h(p) = c(p) - i. 

Let P be the simplex of price vectors normalized so that their sum is 1, i.e., 
P = {PeQ: S1,pi = 1}. The central idea of the proof is to use h to construct a 
continuous function f from P to itself, and then to apply Brouwer's fixed point 
theorem;7 the resulting fixed point-denoted q-turns out to be an equilibrium 
price vector. The function f is defined by 

= p + h(p) 

1 + E h'(p) 
i=l 

We shall show later that h(p) > 0. Therefore, the denominator in the definition off 
does not vanish, and so f(p)eP for all peP. Suppose q is a fixed point off. Then 

q 
I 
+ E h'(q)) = q + h(q), 

i.e., 

(4.1) h(q) = aq , 

where, because h(p) >0, 

n 

E h'(q) >. 
i=l1 

7 Brouwer's theorem asserts that every continuous single-valued function f from P to itself 
has a fixed point, i.e., a point p such that f(p) = p. For a proof, see Dunford and Schwartz [5, 
Sec. V. 12, p. 468]. 
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We wish to show that 

(4.2) h(q) = o. 

Indeed, suppose (4.2) is false. From the definition of h and the convexity of SCP 
it follows that for all p, the hyperplane through h(p) + fi perpendicular to h(p) 
supports8 fCp. Applying this for p = q, we obtain 

(y- Ji) * h(q) > h(q) * h(q) 

for all ye Cq. Because (4.2) is false, a >0; so by (4.1), we obtain 

(y-ii) - aq > a2 q* q, 
and hence 

(4.3) (y-fi)*q>a(q*q)>O forall ye cq. 

Now if for each t we let x(t) be a point in the budget set Bq(t) that is maximal with 
respect to t's preference order, then on the one hand we have (x(t) - i(t)) q < 0, 

and on the other hand x(t) eCq(t). Hence, by integrating we obtain (Jx - fi) q < 0, 
and Jx e JCq; this contradicts (4.3), and establishes (4.2). 

Equation (4.2) says that fiefCq, i.e., there is an assignment x such that Jx = fi 
and x(t) e Cq(t) for all t. Thus, x is an allocation, and x(t) is preferred or indifferent 
to all elements of Bq(t). To complete the proof that (q, x) is a competitive equilib- 
rium, it is only necessary to show that x(t) is in Bq(t) for all t. Suppose now that 
q * x(t) < q * i(t) for some t. Then x does not satutate (because of the saturation re- 
striction (3.4)), and so from the desirability assumption (3.2), it follows that x(t) + 

(bi . . *) >, x(t) for ( >0. But for ( sufficiently small, we shall stil have 

q * (x(t) + ( , . . .., 6)) = q * x(t) + 6 < q * i(t) , 

so x(t) + (( .. ., (5)eBq(t); this contradicts x(t) e Cq(t). So q* x(t) < q i(t) is impos- 
sible, and we conclude that q * x(t) ? q * i(t) for all t. If the > sign would hold for 
some t, we could deduce fq * x > fq * i, contradicting fx = fi. So q x(t) = q * i(t) for 
all t, and it follows that x(t) eBq(t) for all t. So (q, x) is a competitive equilibrium. 

The foregoing proof, which follows McKenzie's ideas [9] rather closely, is in- 
complete in two respects: The required properties of h(p)-existence, uniqueness, 
continuity, and nonnegativity-have not been established; and it has not been 
shown that the x whose integral fx contradicts (4.3) may be chosen to be measur- 
able. These items will be taken up in the next section. 

5. COMPLETION OF THE PROOF OF THE AUXILIARY THEOREM 

In this section we make considerable use of the theory of integrals of set-valued 
functions, as developed in [3]. Before stating the results from [3] that are used in 
the sequel, we recall the necessary definitions. 

8 This is a standard method of constructing a supporting hyperplane. An explicit proof is 
given by McKenzie [9, Lemma 7 (1), p. 61]. 
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Let F be a function defined on T whose values are subsets of Q. Define 

JF = {Jf: f is integrable and f(t) eF(t) for all t} . 

F is called Borel-measurable if its graph {(x, t): xeE', xe-F(t)} is a Borel subset of 
Q x T. F is called integrably bounded if there is an integrable point-valued function 
b such that for all t, xeF(t) implies x< b(t). For each t, F*(t) denotes the convex 
hull of F(t). 

For each p in P, let Fp be a subset of Q. F is said to be upper-semicontinuous in p 
if for each convergent sequence Pl, P2. .. in P and each convergent sequence 
xl, x2, ... in Q such that x1 eFp, x2eF,_p2,.. ., we have lim Xk eFlim Pk, It is lower- 
semicontinuous in p if for each convergent sequence Pl, P2,. . . in P, every point 
in Flim Pk is the limit of a sequence xl, X2 ... in Q such that xl eFp,, x2eFp2, . 
It is continuous if it is both upper- and lower-semicontinuous. 

If F1, F2,... are subsets of En, then lim sup Fk is defined to be the set of all x in 
En such that every neighborhood of x intersects infinitely many Ek. 

The following lemmas are proved in [3]: 

LEMMA 5.1: JF is convex. 

LEMMA 5.2: If F is Borel-measurable, and F(t) is non-empty for each t, then there 
is a measurable function f such that f(t)eF(t) for all t. 

LEMMA 5.3: If F1, F2, ... is a sequence of set-valued functions that are all 
bounded by the same integrable point-valuedfuncticn, then Slim sup Fk D lim SUP jFk. 

LEMMA 5.4: If Fp(t) is continuous in p for each fixed t and Borel-measurable in t 
for each fixed p in P, and if all the Fp are bounded by the same integrable point- 
valuedfunction, then JFP is continuous in p. 

We now wish to establish the existence, uniqueness, continuity, and non- 
negativity of the function h. In principle, the first three of these properties will 
follow from the closedness and nonemptiness, convexity, and continuity (inp) of 
JCp respectively; nonnegativity will follow from weak desirability. In carrying out 
the proofs, however, the unboundedness of the Cp(t) causes difficulties. To cir- 
cumvent these difficulties, we shall find a bounded "substitute" for Cp. 

Let v be a commodity-wise saturating assignment (i.e., an assignment satisfying 
(3.3)), and recall the notation V(t) = {x: x< v(t)}. We shall work with the sets 
V(t)nCp(t), which we shall denote Dp(t), passing back to the consideration of Cp 
itself only at the very end of the section. Note that the Dp(t) are integrably bounded, 
uniformly in p, by the function v. 

LEMMA 5.5: For each t, Dp(t) is continuous in p. 

PROOF: A similar lemma was proved by McKenzie [9, Lemma 4, pp. 57, 68]; we 
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repeat the proof for the sake of completeness. Let PI,P2' ... eP have limit p. 
Supposefirstthatxk eDPk (t) are such that limxk = x. Certainly xe V(t); so if x ODpW, 
then there is yeBp(t) such that y >-, x. Then p y ? p i(t), and since assumption 
(3.1) asserts that i(t) > 0, it follows that p * i(t) > 0. So we can find a z that is suffi- 
ciently close to y so that we still have z >-,x (by continuity (2.3)), butp z <p i(t). 
Then for k sufficiently large, we shall still have Pk * Z < Pk * i(t). Again applying con- 
tinuity (2.3), we deduce from z >-,x that for k sufficiently large z >_Ixk; but this 
contradicts XkeDPk(t). Hence xeDp(t), and upper-semicontinuity is proved. 

Next, let xeDp(t). If x saturates, then it is a member of all Dpk(t), so we can set 
Xk = x in the definition of lower-semicontinuity. Assume therefore that x does not 
saturate. Let Xk be a point in Dpk(t) closest to x; the existence of Xk follows from the 
closedness of Dpk(t), which in turn follows from upper-semicontinuity. For arbi- 
trary 6 >0, set y,=vt(x+(3, . . ., s)); then y, -tx+(6,'. . ., 6) >-,x, by (3.2). 
Either for all 6, ycDPk(t) for all sufficiently large k, or else for some 6, there are 
infinitely many k such that y, ODpk(t). In the first case we have for all 5, by the 
definition of Xk, that II -Xkli ? IIIy - xlI < b/n, where II II represents the euclidean 
norm (i.e., the distance from the origin). Since 6 can be chosen arbitrarily small, 
this shows that Xk-*x, and establishes lower-semicontinuity. In the second case, 
we can assume without loss of generality that y,3 ODPk(t) for all k. Then for each k 
there is a zkeBPk(t) n V(t) such that Zk >,tY,. Since the Zk are all in V(t), they have a 
limit point z; again without loss of generality, we can let it be the limit. Sincepk-+p, 
and Pk * Zk _ Pk * i(t), it follows that p * z _ p * i(t), i.e., zeBp(t). On the other hand, 
from continuity (2.3) it follows that z F, y; since y$ >-,x, it follows that z >- tx. 
But this contradicts xeDp(t) c Cp(t), and completes the proof of the lemma. 

The proof of upper-semicontinuity in this lemma is the only place where use is 
made of i(t) > 0 (3.1), rather than the far weaker Si > 0 (2.1). 

LEMMA 5.6: Cp and Dp are Borel-measurable for each fixed p. 

PROOF: Since every measurable function differs on at most a null set from a 
Borel-measurable function, we may assume that v and i are Borel-measurable. 
The statement "xeDp(t)" is equivalent to "x< v(t) and xeCp(t)." The statement 

"xeCp(t)" is equivalent to "for all yeBp(t), x et y"; because of continuity (2.3), 
this is equivalent to "for each rational point9 reBp(t), x et r." For fixed r, "x et r" 
is equivalent to "not r>-tx." Because of continuity, "r>-tx" is equivalent to 
"there is a rational point s in Q such that s > x and r >- ts." Hence {(x, t): x et r}, 
which equals 

QixT\ U rational s in Q [{x: s > x} x {t: r >- ts}] 

is a Borel set. Hence {(x, t): xe Cp(t)}, which equals n rationalr in Q [(Q x {t: p*r > 
p * i(t)}) u {(x, t): x et r}], is a Borel set, and this proves that Cp is Borel-measurable. 

9 I.e., point with rational coordinates. 
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Hence {(x, t): xeDp(t)}, which equals 

{(x, t): x < v(t)} n {(x, t): x c- C(t)} , 

is a Borel set, and the proof is complete. 

COROLLARY 5.7: fDP is closed, non-empty, convex, and continuous in p. 

PROOF: fve fDP, so non-emptiness is proved. Convexity follows from Lemma 
5.1. Since Dp is uniformly integrably bounded by v, continuity follows from 
Lemmas 5.4, 5.5, and 5.6. Since the values of a continuous set-valued function are 
always closed, the corrollary is proved. 

For each p in P, let d(p) be the point in fDP that is closest to fi. Such a point 
exists because fDP is non-empty and closed; it is unique because fDP is convex. 

LEMMA 5.8: d(p) is a continuous (point-valued) function of p. 

PROOF: A similar lemma was proved by McKenzie [9, Lemma 10, p. 62]; we 
repeat the proof for the sake of completeness. Let Pk-*p, and let x be a limit point 
of d(pk). From the upper-semicontinuity of fDP it follows that xe fDP. Suppose that 
there is a point ye fDp such that IIy- fill < Ix- fill . By the lower-semicontinuity 
of fDP, there is a sequence of points Yke fDpk converging to y. Let {d(pkj)} be a 
subsequence of {d(pk)} converging to x. Since the norm is continuous, it follows 
that forj sufficiently large, 

IlYkjyfill < lld(Pk3)-fill 

contradicting the definition of d(Pk.). Hence x=d(p). So the only limit point of 
{d(pk)} is d(p), and the lemma is proved. 

LEMMA 5.9: For each p in P, d(p) > fi. 

PROOF: If not, then d(p) has a coordinate-without loss of generality, we can let 
it be the first-such that d'(p) < fi'. Now d(p) = fx, where x(t)eDp(t) for all t. 
Let y(t) = (vl(t), x2(t), . . ., xn(t)). Then y(t) > x(t) and y(t) < v(t); therefore y(t)e 
Dp(t) for all t. Therefore 

(f v' d2 (P), . . ., dn(p)) = fy c-Dp. 

Now d'(p) < fi', and by the saturation restriction (3.4), fi' < fv'; so there is an cx 
with 0< c < 1 such that c4v' + (1- cx)d'(p) = fi'. Setting z = cxy + (1 - oc)x and 
z = fz, we obtain ze fDp (by the convexity of fDp), and z = (fi, d2(p),. .d nd(p)). 
Then from d'(p) < Ji', we deduce lIz-Jill2 = =i)2 

n 

< Z (di(p)-_if2 = 1 d(p)- Jill2 
;= 1 
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Thus z is closer than d(p) to Si, a contradiction. This proves the lemma. 
Let g(p) = d(p) - Si. We have established for g(p) all the properties that we set 

out to establish for h(p): existence, uniqueness, continuity, and nonnegativity (the 
last by Lemma 5.9). So with the following lemma we achieve our aim: 

LEMMA5.10: g(p)=h(p). 

PROOF: Fix p, and write g=g(p), h=h(p), c=c(p), d=d(p). If g=O thereis 
nothing to prove. Otherwise, by the definition of g, the hyperplane through dper- 
pendicular to g supports SDP (see footnote 8). This means that 

(i) x g?jjgjI2 for all xeSDp-Si. 
Suppose there is a point in fSCp that is nearer to Si than d is. This means that there 
is a point y in SCp - Si that is nearer to 0 than g is. Then 

(ii) 11y112< lughl2 

Furthermore jjyj12-2yg+ u1gh12 = IIy-g112 >0. Hence IIy112 >y.g+ [Y g- llgll2]. 
If y g- ugh2 ?0, then it follows that 11Y112 >yg >gh2, contradicting (ii). Hence 

(iii) y.g< 11gh12 

Formula (iii) expresses the geometrically obvious fact that any point nearer than 
d to Si must be on the near side of the hyperplane through d perpendicular to g. 

Now y = Sx - Si, where x(t) eCp(t) for all t. Then by commodity-wise saturation, 
v,(x(t))eDp(t) for all t. Furthermore v,(x(t)? x(t), and v,(x(t))? v(t). Setting 
z(t) = v,(x(t)), we obtain Sz E SDP and Sz - ii ? y. Since g 2 0 (Lemma 5.9), it follows 
that (Sz-Ji) *g< y *g. Hence by (iii), (Sz-ii) g< u1gh12. But since Sz-SieSDp-Si, 
it follows from (i) that (SZ- Si) *g _g 11 2, and this is the contradiction that proves 
our lemma. 

It remains to show that a measurable x may be chosen whose integral will 
contradict (4.3). According to Section 4, it is sufficient to show that there is a 
measurable x such that for all t, x(t) is maximal in Bq(t) with respect to t's prefer- 
ence order. Let X(t) be the set of all maximal points in Bq(t). As in the proof of 
Lemma 5.6, we may assume that i is Borel-measurable. Then 

{(x, t): xeBq(t)} = {(x, t): q x< q i(t) 
=Q x T\U[{x: q.x >0 X {t: 0 >q.i(t)}], 

where 0 runs over the rational numbers. Hence the left side is a Borel set. Applying 
Lemma 5.6 we deduce that {(x, t): xeX(t)}, which equals 

{(X, t): xcBq(t)}n{x, t): xcCq(t)}, 

is a Borel set. Hence X is Borel-measurable. 
Next, we show that X(t) is non-empty for each t. From the compactness of V(t)n 

Bq(t) and the continuity condition (2.3) for preferences, it follows that V(t)BlBq(t) 
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has a maximal element y. Then because of commodity-wise saturation, y is also 
maximal in Bq(t). Indeed, suppose zeBq(t) is such that z >-ty. Now zeBq(t) means 
q z< q i(t); therefore q v Vt(z) < q z _ q i(t), and therefore also vt(z)eBq(t). But by 
definition, v,(z)e V(t)flBq(t). Finally, v,(z)z >-,y. Thus v,(z) contradicts the 
maximality of z in V(t)rfBq(t), proving the existence of a maximal element in Bq(t). 

From Lemma 5.2 we may now deduce the existence of an appropriate x. This 
completes the proof of the auxiliary theorem. 

6. PROOF OF THE MAIN THEOREM 

The general idea is to approximate a given market X satisfying the conditions 
of the main theorem by a sequence of markets 1k satisfying the conditions of the 
auxiliary theorem. Then by the auxiliary theorem, the 1k have competitive 
equilibria (q,k Yk); from these competitive equilibria we shall construct a pair 
(q, y) that is a competitive equilibrium in the original market M. 

To define the markets Mk, we must specify their initial assignments ik and their 
preference orders 't the number of commodities is taken to be n in all the /'k. Let 
bk be a monotone sequence of numbers tending to 0, and define 

ik(t) = i(t) + (6k, * * * b k) - 

To define the preference orders, let Yk be a monotone sequence of numbers tending 
to oo such that yt > 1, let 

Vk(t) = i(t) + (Yk, * * * Y)J 

and let "hyper-rectangles" Vk(t) and functions Vk,t from Q onto Vk(t) be defined as 
in Section 3, with Vk in place of v. Now define the preference orders by 

Xt y if and only if Vk,,(X) et Vk,t(Y). 

It may be verified that the /k satisfy the conditions of the auxiliary theorem, 
with Vk as the commodity-wise saturating assignment. Furthermore, note that the 
preference orders in 1k coincide with those in X for all x and y such that x and y 
are < i(t) + (Yk, Y k). 

Let (q,k, Yk) be a competitive equilibrium of /kk. Because of the compactness of 
P, the sequence {qk} has a convergent subsequence, and we may suppose without 
loss of generality that this subsequence is the original sequence. Let q=liMkqk. 

The following is the crucial lemma of this section: 

LEMMA 6.1: q >0. 

PROOF: Suppose, on the contrary, that some coordinate of q vanishes, say ql = O. 
First we establish 

(i) if q* i(t) >0, then {yk(t)} has no limit point as k-> oo. 

Indeed, suppose y were such a limit point; without loss of generality, assume 
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that it is actually the limit. Now because (qk, Yk) is a competitive equilibrium in X'k, 

we have qk Yk(t) < qk ik(t). Using this and the saturation restriction (3.4) in X'k, 

we deduce that yk(t) does not saturate. Hence if qk * Yk(t) < qk *ik(t), then by weak 
desirability (3.2) in /kk, it would be possible to find a member of Bqk(t) preferred to 
yk(t), contradicting the definition of competitive equilibrium. Thus qk Yk(t) 

qk i(t), and so from the hypothesis of (i) we obtain 

(ii) q,y liMk qk*yk(t) = limkqk * ik(t) = q - i(t) > 0. 

Hence there is a coordinate] such that yi > 0 and qJ > 0; assume without loss of 
generality that j= 2. Now by desirability (2.2), y+ {1, 0, . . ., 0} >-tY. If for suffi- 
ciently small ( >0 we define z = y + {1, -, , . . ., 0}, then zegi?, and by conti- 
nuity we deduce z >-ty. Again using continuity, we obtain z >- tYk(t) for k sufficiently 
large. Since (q,k, Yk) is a competitive equilibrium in Mk, we obtain qk -z> qk * ik(t). 

Letting k - oo and applying (ii), we get 

(iii) qz*= 4iMk qk * Z_lim qk.ik(t) = q*y 

But since ql =0 and q2 >0, we have 

q,z= q.y+q'- q2 = q-y_q y< q,y 

contradicting (iii). This proves (i). 
Since qeP and Ji > 0 (2.1), it follows that Jq - i q * Ji > 0. Let S = {t: q * i(t) > 0}; 

then S is non-null, and we denote its measure by p(S). Define 
n rn 

A={xe?: Z xi<2f E iJ/p(S)}. 
i=l j=l 

For teS, it follows from (i) and the compactness of A that yk(t)eA for at most 
finitely many k; that is, for each teS there is an integer k(t) such that liy'(t) > 
2J E. ijl/u(S) for k > k(t). Hence for te S, 

(iv) lim infk Z y'(t) _ 2 i3/Iu(S) . 

Because Yk is an allocation in v1k, we have 

(v) limk{Z Yk = limkj' ik = limk [J'Zi +nbk]=J' ii 

But by Fatou's Lemmal0 and (iv), 

limkfZ yk _ >lim infkE yk >f lim infk Z Y' 

> 2E2f ii/I(S)] = [2 f ij ] 1/(S)= 2fE ii > f ii 

10 Fatou's Lemma states that if gk are nonnegative measurable real functions, then lim infk 
I _k >5 lim infk qk. See [5, HII. 6.19, p. 152]. 
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where the last inequality follows from Si >0 (2.1). This contradicts (v) and proves 
Lemma 6.1. 

Since qk->q >0, there is a 3 >0 such that qk ?_ for k sufficiently large and all i. 
Without loss of generality, we may assume that qk ?_ for all i and k, and that 

ki(t) ? i'(t) + 3 for all i, k, and t. Hence for all i, k, and t, 
n 

byk(t)? qk Yk(t)? qk ik(t)?_ qk * i(t) + 6 _ i3(t) + 6. 

j=1 

Thus we obtain 

(6.2) Yk(t)-< 1 + Z i(t) 

For each t, let Y(t) be the set of limit points of yk(t) as k- >oo. Let Yk(t) be the 
set consisting of the single point yk(t); then Y(t) = lim sup Yk(t). By (6.2), all the 
Yk are bounded by the same integrable function. Hence by Lemma 5.3, 

Ji = lim Jik = lim Jykelim sup I Yk c Slim sup Yk = SY 
Let y be such that y(t) Y(t) for all t, and 

(6.3) Sy = Si . 

We shall show that (q, y) is a competitive equilibrium in S. 

To this end we must demonstrate that y is an allocation, that y(t) belongs to 
Bq(t) for all t, and that y(t) is maximal in Bq(t) for all t, i.e., that no member 
of Bq(t) is preferred to y(t). We have already shown that y is an allocation (6.3). 
Next, since y(t)ce Y(t), it follows that y(t) is a limit point of {yk(t)}, say y(t)= 
limm+oo Ykm (t). Since 

qkm Ykm(t) ? qk_ Lkm(t) 

we deduce by letting m-+ oo that q* y(t) < qe i(t), and so for all t, 

(6.4) y(t)eBq(t). 

Finally, suppose that for t in a set of positive measure, there is a zeBq(t) such 
that z >-y(t). Clearly z+O; suppose without loss of generality that zt >0. If for 
3 >0 sufficiently small we define z, = z -(, 0, . . ., 0), then we still have 

(6.5) zz, > y(t) 
Moreover, since 

limk qk Z,= q z-ql 6<q z< q i(t) = lim qk ik(t), 

it follows that 

qk Z,6 < qk * k(t) 

for all sufficiently large k, say for k > ko. Now since y(t) is a limit point of {Yk(t)}, 
there is a subsequence {Ykm(t)} converging to y(t); hence for m sufficiently large, 

Z6 > I Yo kJ) I 
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by (6.5). If we also pick m so large so that km _ko, then z, contradicts the maxi- 
mality of Ykm(t) in the budget set {x: qkm- X< qkm ikm(t)}. Thus the supposition 
z >-,y(t) has led to a contradiction, and we conclude that y(t) is maximal in Bq(t) 
for all t. Together with (6.3) and (6.4), this completes the proof that (q, y) is a 
competitive equilibrium, and with it the proof of the main theorem. 

7. COMPARISON WITH MCKENZIE'S PROOF 

The differences between this proof and McKenzie's are caused by the different 
initial equipment: we have no convexity assumption to work with, and we have a 
continuum of traders rather than a finite number. 

McKenzie needs the convexity assumption in only one place, to show that the 
aggregate preferred set (in his case the sum of the individual preferred sets) is 
convex. This is needed to define h(p) uniquely, and follows from the convexity of 
the individual preferred sets. In a finite model there is no getting around this: no 
intuitive assumption other than individual convexity would lead to the convexity 
of the aggregate preferred set. 

In a continuous model, however, this is superfluous, because of Lemma 5. 1 ; this 
says that the integral of any set-valued function over a non-atomic measure space 
(in our case the unit interval) is convex, even if the individual values of the function 
are not convex. In particular, the aggregate preferred set, as the integral of the 
(possibly nonconvex) individual preferred sets, is convex. 

Because of the presence of a continuum of traders, the space of assignments is 
no longer a subset of a finite-dimensional euclidean space, but of an infinite-di- 
mensional function space. This necessitates the use of completely new methods to 
justify the passage from properties proved for individual traders to the correspond- 
ing properties for the aggregate of all traders. Consider, for example, the continuity 
of the aggregate preferred set as a function of the price vector. In the finite case, 
this follows trivially from the continuity of the individual preferred sets. Here, 
on the other hand, it involves Lemma 5.4, which is comparatively deep. In fact, 
Lemmas 5.1-5.4, which have been separately published, were originally proved 
for the purposes of this paper, and they embody the chief mathematical difficulties. 
The proofs of these lemmas involve Lyapunov's theorem on the range of a vector 
measure [8], and the methods of functional analysis (Banach spaces) and topology. 

Another significant difference between this proof and McKenzie's is in the matter 
of boundedness. In the proof of the auxiliary theorem, the set of bundles under 
consideration must be in some sense bounded in order to establish the continuity 
-and indeed the existence-of the individual preferred sets. McKenzie does this by 
noting that no individual trader can have more goods than the whole market. This 
is not available here, because no matter how large an individual trader's bundle is, 
it is still infinitesimal compared with the whole market. We therefore used the 
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notion of commodity-wise saturation, which does the job of bounding for us. In the 
passage from the auxiliary to the main theorem we do not have commodity-wise 
saturation, but need boundedness so that the sequence of competitive equilibria 
of the auxiliary markets &k should converge. Here we first deduce from the desir- 
ability assumption (2.2) that all prices must be nonvanishing, and this bounds the 
bundles under consideration to a finite simplex. 

8. THE CORE 

Intimately connected with the concept of competitive equilibrium is that of 
core. This is the set of all allocations with the property that no "coalition" of 
traders can assure each of its members of a more desirable bundle by trading within 
itself only, without recourse to traders not in the coalition. Formally (in our model), 
an allocation x is in the core if there is no measurable nonnull set S of traders, for 
whom there is an allocation y such that y(t) >-x(t) for all teS and fsY = fs. 
In a finite market, the integral should be replaced by a sum. 

In a finite market with convex preferences, the core is never empty; but when the 
preferences are not convex the core may be empty. As with the competitive equi- 
librium, it might be conjectured that this "pathology" would "tend to disappear" 
as the number of traders increases. Investigating this possibility, Shapley and 
Shubik [10] showed that though the core itself may remain empty for any (finite) 
number of traders, it is possible to define a kind of approximation to the core called 
an s-core; and that for any positive s, if the number n of traders is allowed to in- 
crease in a certain way, the s-core will become non-empty for sufficiently large n. 
They concluded that, heuristically speaking, the true core lies "just below the 
surface" for sufficiently large n. The assumptions on which their theorem is based 
are comparatively strong: They assumed transferable utilities, that all traders have 
the same utility function, and that there is a fixed finite number of distinct types of 
traders (where two traders are of the same "type" if they have the same initial 
bundles). 

We shall now describe how the concepts of core and competitive equilibrium 
are related. Let us define an equilibrium allocation to be an allocation that forms a 
competitive equilibrium when paired with an appropriate price vector. For finite 
markets, the core always contains the set of equilibrium allocations, but the two 
sets do not usually coincide. A long-standing conjecture states, however, that as 
the number of players in a market increases, the core of the market "tends," in 
some sense, to the set of equilibrium allocations. Recently this conjecture has been 
formalized and proved in a number of different ways." In [2] we showed that for a 
market with a continuum of traders, the core actually equals the set of equilibrium 
allocations. This was shown under conditions that are even weaker than those of 

11 See [2] for a brief survey of these developments. 
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this paper.12 A question that was left open was the existence of a competitive 
equilibrium, or equivalently, the non-emptiness of the core; though it had been 
shown that the two sets coincide, the possibility that both vanish was left open. 
From the theorem of this paper, it now follows that the core is non-empty as well. 
This agrees well with the Shapley-Shubik result (which was, however, obtained un- 
der considerably stronger assumptions): Since the c-core is non-empty for large n, 
it is to be expected that the true core is non-empty for "infinite n." 

The Hebrew University of Jerusalem 
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